
Abstract- Brain MR image segmentation takes an important role 
in research and clinical application. Statistical method is 
effective in the segmentation, which is usually based on 
maximum a posterior (MAP). The key of MAP method is to 
estimate a prior probability of the segmentation. Multilevel 
logistic (MLL) model has been used in practice for the 
estimation. To farther improve the performance of the 
segmentation, a weighted MLL (WMLL) model is proposed in 
this paper. The simulated results show that the WMLL model is 
effective.  
Keywords -  MR image, image segmentation, MLL model. 

 
I. INTRODUCTION 

 
Brain MR image segmentation takes an important role in 

clinical applications. It is well known that manual 
segmentation of such images is not only tedious but also 
inconsistent. So automatic or semi-automatic methods are 
desirable. Hitherto many methods have been developed, 
which can be categorized into three classes [1], which are 
based on region [2]-[5], boundary[6]-[8], and point[9]-[17] 
respectively. The method based on region is computationally 
effective due to the split and merge algorithm provided by 
Horowitz and Pavlidis [2], but it has difficulty in getting a 
unique result [3]. Sonka [4] segments images into small 
pieces and then applied genetic algorithm to rearrange them, 
so that they form large regions consisting with prior 
knowledge, which is obtained from manually segmented 
images. However, it seems not easy to generalize such 
method to other cases. Those methods based on boundary fail 
to sufficiently utilize all messages in images.  The 
segmentation method based on point can be found in many 
literatures recently. Various techniques have been adopted, 
including fuzzy [9], neural networks, genetic methods 
[10][11], statistical [12]-[17] and so on. 

The statistical approach is paid much more attentions in 
present study, particularly those based on maximum a 
posterior (MAP) methods. In statistical methods, the prior 
probability of the segmentation is not easy to estimate. So 
maximum likelihood (ML) method is applied in some 
literature [17], which only considered p{y|x} , where y 
represents intensities of an image and x the segmentation. But 
ML method is liable to violate the piecewise congruous of 
tissues [17]. As Markov random field (MRF) and Gibbs 
distribution (GD) equivalence [12] was introduced, prior 
distribution of the segmentation can be calculated. Multilevel 
logistic (MLL) model is a typical way to do so. To further 
improve the performance of the segmentation, a weighted 
MLL (WMLL) model is proposed in this paper.  
 

II. WEIGHTED MULTILEVEL LOGISTICS MODEL 
 

There exist three main obstacles in segmentation of brain 
MR images [17]: the thermal or electronic noise, the intensity 

non-uniformity of same tissue classes, and the partial volume 
effects. Thermal noise is often assumed Gaussian, white, 
additive, and tissue dependent. Intensity non-uniformity of 
same tissues is due to biological variance in different 
structures of the same tissue and irregularities in imaging 
equipment. It is assumed slowly varied spatially. Partial 
volume effects are due to the limited resolution of MR images. 
Thermal noise and identity non-uniformity are studied in 
present research, but the partial volume effects are left 
unconsidered. 
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Let y={yi ; i I} be an image in Cartesian space N 2, 
where I N 2 is the region that y occurs.  yi is the intensity of 
the image at site i. y can be regard as a realization of analog 
random variables at I. Suppose there are K different tissues 
(classes) in the image, and each of them is labeled by a 
number in Λ={1,2,…K}. Let xi=k k Λ indicates that site i 
belongs to class k, then x={xi ; i I} denotes a segmentation 
of y. x can also be regarded as a realization of discrete random 
variables at I. The goal of image segmentation is to find an 
optimal or sub-optimal x under some principle. 

In MAP method, P{x|y} is considered and the optimal x=x* 
that makes it largest is regarded as the segmentation result. 
Usually by Bayes’ theorem it can be written in the following 
form 
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So the problem is transferred to finding maximum product 
of p{y|x} and P{x}. 

p{y|x} is the joint density function of y={y1, y2, …, y|I|} 
under segmentation x, where |I| is the total number of sites in 
image y. yi is assumed disturbed by additive, white, Gaussian, 
tissue dependent, and space variant noise, so if xi=k, then 
                                                                 (2) kikii ny ,, += µ
where µik is the mean intensity of tissue k at site i, and nik is 
Gaussian noise at i corresponding to tissue k, whose density 
function obeys N(0, ik

2). Since the noise in the image is a 
space-variant white Gaussian process and tissue dependent, 
they are conditionally independent [17]. Let Rk be the set of 
sites that belong to class k, then p{y|x} can be expressed as 
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where all of parameter pairs i ={(µik, ik); k } form a 
parameter set ={ i;i I}. 

MLL model is an effective way to estimate P{x} by using 
information of the segmentation x itself. However, it still has 
some disadvantages due to its assumption of homogeneity of 
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the images. For example, different segmentations may have 
the same prior probability according to the model. In fact, 
since white matter (WM) is always surrounded by gray matter 
(GM) in brain MR images, any estimation of the prior 
probability of segmentations that WM is outside of GM 
should be zero, or at least very small, which is not the case in 
MLL model. This implies that the assumption of 
homogeneous is not acceptable in brain MR image 
segmentations.  

In practice, computation burden is so large that images are 
segmented site by site [17]. So for site i, the probability of 
xi=k is 
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provided that yi and xj’s are conditionally independent, where 
i is the neighborhood of i, which does not contain i itself, 

and Pk{xi} denotes P{xi=k, xj, j j}. 
 In MLL model,  Pk{xi} is calculated as 
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where c is a clique, Vc(x) is the potential of clique c, and Z is 
the normalization constant. But  real images may not be MRF, 
so estimating Pk{xi} using (5) may produce errors.  

In our study,  Pk{xi} is weighted by the probability of class 
k at site i in order to get better estimation. Suppose that k{xi} 
be the probability of class k at site i, then Pk{xi} can be written 
as 
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where Z’ is the normalization constant.  
Let t’ be classifications of sites in i, then Vc(x) is exactly 

determined by xi and t’, since in (5) or (6), i c. So Vc(x) is 
just Vc(xi, t’). Thus the normalization constant can be 
expressed as 
                      (7) ( ) { }∑∑ ∑
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where ’ is the space of t’. Since normalization constant does 
not affect classification, it is denoted by Z for simplicity in the 
context, despite that it may have different expressions. So 
P{xi=k | yi, xj, j i} can be written as 
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 (9) 
Usually k{xi} is not known except that many accurately 

segmented images are statistically analyzed. To overcome this 
obstacle, intensities of the image are involved in estimating  

k{xi}. Since class k has a mean intensity k,i at site i, 
k=1,2,…K, it is natural to assume that the closer yi is to k,i, 
the more possible that it belongs to class k, and the larger 
probability of class k at site i. An instinct way of describing 
“closeness” is to adopt intensity Euclidean distance measure, 
which is the absolute value of difference between two 
intensities. Thus, the larger the intensity Euclidean distance 
between yi and k,i, the smaller probability of k{xi}. So 
                             { }
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Images are usually corrupted by thermal noise, as 
described before, intensity of a single site may be distorted 
too much that it cannot correctly reflect intensity Euclidean 
distance. So a misclassification may occur. To solve this 
problem, two methods can be applied. The first one is to 
decrease effect of noise in calculating k{xi}; the second one 
is to add threshold in the judgment step of the algorithm. 

To decrease effect of noise in calculating k{xi}, |yi- k,i| 
in (8) is replaced by 

iki ,µ−y , which is the mean value of    

|yj- k,i|, j Qi
’, where Qi

’ is a neighbor region of site i. So 
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This method holds provided that the spatial probability 
distribution of each class is a smooth surface. 

A threshold qi
’ can be applied to decrease occurrence of 

the misclassification either. Since classes are piecewise 
contiguous, if site i belongs to some class k, there should be 
some sites in its neighborhood i that also belongs to class k. 
if not, site i should not be classified as class k. qi

’ takes the 
role of checking whether there is enough sites that belong to 
class k. 

The above estimation does not include noise model in 
images, at least it does not care standard variance. In fact, 
since noise is assumed to be white and Gaussian, this model 
can be applied in estimating probability of class k at site i. In 
this case, the probability of class k at site i has the following 
form:  
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For the same reason shown above, to prevent effect of 
large noise at some sites, |yi- k,i| in (12) can be replaced by 



ikiy ,µ− , or threshold can be introduced, as is done when only 

intensity Euclidean distance is applied. 
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Also (13) holds provided that the spatial probability 
distribution of each class is a smooth surface 
 

III. SEGMENTATION ALGORITHM 
 

Iterated conditional modes (ICM) proposed by Beseg [13] 
is applied to segment images [17]. This procedure is also 
applied in our study. The key point of ICM in the study is to 
estimate parameters in MLL model from current 
segmentation result [14], then classifying the image site by 
site, then use the new segmentation result to estimate MLL 
model parameters, and so on. This procedure continues until 
some criterion is satisfied, say, maximum loop time is 
reached or the change between two recent segmentations is 
ignorable.  

Before Uk(xi) is calculated, parameter set should be 
known. It can be obtained by taking sample means and 
deviations of intensities of those sites belonging to class k in 
neighbor region Qi of site i. In case that there are not enough 
sites belonging to some class k in Qi, class k is regarded as not 
existed at site i. So a threshold qi is set so that any class with 
less than qi sites belonging to it in Qi cannot be assigned to xi. 
 

IV. RESULTS 
 

Brain MR images are downloaded from brainweb [18]. 
The size of McGill data is 181*217*181 with voxel size of 
1*1*1 mm3, from which the 94th slice is randomly selected 
for segmentation. McGill provides two sets of images with 
different noise disturbance and intensity non-uniformity. One 
is corrupted by 3% noise with 20% intensity non-uniformity, 
and the other is corrupted by 9% noise with 40% intensity 
non-uniformity. The later is adopted to check the WMLL 
model.  

Since the destination of segmentation in this study is to 
separate GM and WM, tissues like skin, skull and others are 
roughly pre-eliminated by a template before segmentation. 
According to intensity histogram, four kinds of tissues exist in 
the remaining image. To speed up the segmentation process 
and avoid background interference in the process, sites 
outside of the template are kept from the process. Neighbor 
region Qi of site i is 41*41, and Qi

’ is also 41*41 although 
they are not necessarily be the same. qi = 8 and qi

’ = 0,1,2 
respectively. 

Fig.1. shows the results of the segmentation using 
different k(xi)s described in section II. (a) is the original 
corrupted image and (b) is the intensity histogram of (a). (c)-
(e) show the results when (10) is adopted with qi

’ = 0,1,2 
respectively; (f) shows result when (11) is adopted; (g)-(i) 
show results when (12) is adopted with qi

’ = 0,1,2 
respectively; and (j) shows result when (13) is adopted. The 

corresponding covariance coefficients of WM and GM are 
given in Table 1.  

 
IV. DISCUSSION AND CONCLUSION 

 
In statistical segmentation methods, MLL model is not 

fully acceptable in brain MR image segmentation. In this 
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Fig.1. Results when different expression of k(xi) is adopted. (a) Original 
corrupted image. (b) Intensity histogram of (a). (c)-(e) (11) is adopted with qi

’ 
being 0,1,2 respectively. (f) (12) is adopted. (g)-(i) (13) is adopted with qi

’ 
being 0,1,2 respectively. (j) (14) is adopted. 
 

TABLE I 
COVARIANCE COEFFICIENTS OF GM AND WM 

k(xi) (10) (11) (12) (13) 
qi

’ 0 1 2 0 0 1 2 0 
GM 0.9037 0.9057 0.9133 0.9186 0.8805 0.8920 0.9111 0.9198
WM 0.9289 0.9287 0.9312 0.9395 0.9189 0.9223 0.9269 0.9390



paper, WMLL is used to further improve the performance of 
the segmentation. Two methods  of weight estimation are 
provided. (11) and (13) hold provided that the spatial 
probability distribution of each tissue is smooth. Since the 
segmentation results are better than others when (11) and (13) 
are adopted, it seems that the assumption is correct according 
to our limited experiments. If only |yi- k,i| is adopted without 
taking mean value, as in (10) and (12), setting  qi

’ > 0 is 
important to avoid small holes in the results. 
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